29. Moments in the Chebotarev density theorem: non-Gaussian families. | Régis de la Bretèche, Florent Jouve | Submitted. |
28. Moments in the Chebotarev density theorem: general class functions. | Régis de la Bretèche, Florent Jouve | Accepted, Algebra and Number Theory. |
27. Extending the unconditional support in an Iwaniec-Luo-Sarnak family. | Lucile Devin, Anders Södergren | Accepted, Algebra and Number Theory. |
26. Omega results for cubic field counts via lower-order terms in the one-level density. | Peter Cho, Yoonbok Lee, Anders Södergren | Forum Math. Sigma 10 (2022), Paper No. e80. |
25. Unconditional Chebyshev biases in number fields. | Florent Jouve | J. Éc. polytech. Math. 9 (2022), 671-679. |
24. Moments of moments of primes in arithmetic progressions. | Régis de la Bretèche | Proc. Lond. Math. Soc. (3) 127 (2023), no. 1, 165–220. |
23. On a conjecture of Montgomery and Soundararajan. | Régis de la Bretèche | Math. Ann. 381 (2021), no. 1-2, 575–591. |
22. Disproving Hooley’s conjecture. | Greg Martin | J. Eur. Math. Soc. (JEMS) 25 (2023), no. 12, 4791–4812. |
21. The first moment of primes in arithmetic progressions: Beyond the Siegel-Walfisz range. | Sary Drappeau | Trans. London Math. Soc. 8 (2021), no. 1, 174–185. |
20. Distribution of Frobenius elements in families of Galois extensions. | Florent Jouve | J. Inst. Math. Jussieu 23 (2024), no. 3, 1169–1258. |
19. Low-lying zeros in families of holomorphic cusp forms: the weight aspect. | Lucile Devin, Anders Södergren | Q. J. Math. 73 (2022), no. 4, 1403–1426. |
18. Major arcs and moments of arithmetical sequences. | Régis de la Bretèche | Amer. J. Math. 142 (2020), no. 1, 45–77. |
17. Entiers friables dans des progressions arithmétiques de grand module. | Régis de la Bretèche | Math. Proc. Cambridge Philos. Soc. 169 (2020), no. 1, 75–102. |
16. Low-lying zeros of quadratic Dirichlet L-functions: A transition in the Ratios Conjecture. | James Parks, Anders Södergren | Q. J. Math. 69 (2018), no. 4, 1129–1149. |
15. Low-lying zeros of quadratic Dirichlet L-functions: Lower order terms for extended support. | James Parks, Anders Södergren | Compos. Math. 153 (2017), no. 6, 1196–1216. |
14. On Vaughan’s approximation: The first moment. | | J. Lond. Math. Soc. (2) 95 (2017), no. 1, 305–322. |
13. Independence of the zeros of elliptic curve L-functions over function fields. | Byungchul Cha, Florent Jouve | Int. Math. Res. Not. IMRN 2017, no. 9, 2614–2661. |
12. Prime number races for elliptic curves over function fields. | Byungchul Cha, Florent Jouve | Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 5, 1239–1277. |
11. A conditional determination of the average rank of elliptic curves. | | J. Lond. Math. Soc. (2) 94 (2016), no. 3, 767–792. |
10. Low-lying zeros of elliptic curve L-functions: Beyond the ratios conjecture. | James Parks, Anders Södergren | Math. Proc. Cambridge Philos. Soc. 160 (2016), no. 2, 315–351. |
9. On the non-vanishing of Dirichlet L-functions at the central point. | | Q. J. Math. 66 (2015), no. 2, 517–528. |
8. The distribution of the variance of primes in arithmetic progressions. | | Int. Math. Res. Not. IMRN 2015, no. 12, 4421–4448. |
7. Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions. | Steven J. Miller | Algebra Number Theory 9 (2015), no. 1, 13–52. |
6. Elliptic curves of unbounded rank and Chebyshev’s bias. | | Int. Math. Res. Not. IMRN 2014, no. 18, 4997–5024. |
5. Highly biased prime number races. | | Algebra Number Theory 8 (2014), no. 7, 1733–1767. |
4. The influence of the first term of an arithmetic progression. | | Proc. London Math. Soc. 106 (4) (2013), 819–858. |
3. Inequities in the Shanks-Renyi prime number race: An asymptotic formula for the densities. | Greg Martin | J. Reine Angew. Math. 676 (2013), 121–212. |
2. On a Theorem of Bombieri, Friedlander and Iwaniec. | | Canad. J. Math. 64 (2012), 1019–1035. |
1. Residue classes containing an unexpected number of primes. | | Duke Math. J. 161 (2012), no. 15, 2923–2943. |