Below you can find all my publications, with arXiv links. Do not hesitate to contact me with any comments you might have.

TitleCoauthor(s)Publication details
26. Omega results for cubic field counts via lower-order terms in the one-level densityPeter Cho, Yoonbok Lee, Anders SödergrenSubmitted.
25. Unconditional Chebyshev biases in number fields.Florent JouveSubmitted.
24. Moments of moments of primes in arithmetic progressions.Régis de la BretècheSubmitted.
23. On a conjecture of Montgomery and Soundararajan.Régis de la BretècheAccepted, Mathematische Annalen.
22. A disproof of Hooley’s conjecture.Greg MartinSubmitted.
21. The first moment of primes in arithmetic progressions: Beyond the Siegel-Walfisz range.Sary DrappeauAccepted, Transactions of the London Mathematical Society.
20. Distribution of Frobenius elements in families of Galois extensions.Florent JouveSubmitted.
19. Low-lying zeros in families of holomorphic cusp forms: the weight aspect.Lucile Devin, Anders SödergrenSubmitted.
18. Major arcs and moments of arithmetical sequences.Régis de la BretècheAmer. J. Math. 142 (2020), no. 1, 45–77.
17. Entiers friables dans des progressions arithmétiques de grand module.Régis de la BretècheMath. Proc. Cambridge Philos. Soc. 169 (2020), no. 1, 75–102.
16. Low-lying zeros of quadratic Dirichlet L-functions: A transition in the Ratios Conjecture.James Parks, Anders SödergrenQ. J. Math. 69 (2018), no. 4, 1129–1149.
15. Low-lying zeros of quadratic Dirichlet L-functions: Lower order terms for extended support.James Parks, Anders SödergrenCompos. Math. 153 (2017), no. 6, 1196–1216.
14. On Vaughan’s approximation: The first moment. J. Lond. Math. Soc. (2) 95 (2017), no. 1, 305–322.
13. Independence of the zeros of elliptic curve L-functions over function fields.Byungchul Cha, Florent JouveInt. Math. Res. Not. IMRN 2017, no. 9, 2614–2661.
12. Prime number races for elliptic curves over function fields.Byungchul Cha, Florent JouveAnn. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 5, 1239–1277.
11. A conditional determination of the average rank of elliptic curves. J. Lond. Math. Soc. (2) 94 (2016), no. 3, 767–792.
10. Low-lying zeros of elliptic curve L-functions: Beyond the ratios conjecture.James Parks, Anders SödergrenMath. Proc. Cambridge Philos. Soc. 160 (2016), no. 2, 315–351.
9. On the non-vanishing of Dirichlet L-functions at the central point. Q. J. Math. 66 (2015), no. 2, 517–528.
8. The distribution of the variance of primes in arithmetic progressions. Int. Math. Res. Not. IMRN 2015, no. 12, 4421–4448.
7. Surpassing the Ratios Conjecture in the 1-level density of Dirichlet L-functions.Steven J. MillerAlgebra Number Theory 9 (2015), no. 1, 13–52.
6. Elliptic curves of unbounded rank and Chebyshev’s bias. Int. Math. Res. Not. IMRN 2014, no. 18, 4997–5024.
5. Highly biased prime number races. Algebra Number Theory 8 (2014), no. 7, 1733–1767.
4. The influence of the first term of an arithmetic progression Proc. London Math. Soc. 106 (4) (2013), 819–858.
3. Inequities in the Shanks-Renyi prime number race: An asymptotic formula for the densities.Greg MartinJ. Reine Angew. Math. 676 (2013), 121–212.
2. On a Theorem of Bombieri, Friedlander and Iwaniec. Canad. J. Math. 64 (2012), 1019–1035.
1. Residue classes containing an unexpected number of primes. Duke Math. J. 161 (2012), no. 15, 2923–2943.